Codimension One Minimal Projections Onto the Quadratics

Michael Prophet
Department of Mathematics, Idaho State University, Pocatello, Idaho 83209

Communicated by E. W. Cheney
Received August 13, 1993; accepted in revised form February 22, 1995

We construct a minimal projection $P: X \rightarrow V_{3}$, where $X=\left[1, t, t_{2}, t|t|^{\sigma}\right]$ and $V_{3}=\left[1, t, t_{2}\right]$, for all $\sigma \geqslant 1$. This generalizes a result of G. J. O. Jameson. © 1996 Academic Press, Inc.

1. Introduction and Preliminaries

A 1987 paper of G. J. O. Jameson (see [3]) established a lower bound for the projection constant for the second degree algebraic polynomials on $[-1,1], \Pi_{2}$. The method used was to consider overspaces of Π_{2} of the form $X=\left[1, t, t_{2}, t|t|^{\sigma}\right]$ for $\sigma=1,2$ and establish lower bounds for projections from X onto Π_{2}. This would provide lower bounds for a minimal projection from $C[-1,1]$ onto Π_{2}. Good good estimates were attained by cleverly chosing certain 'extreme' families of function from X to project. In 1990, the projection constant for Π_{2} was found by B. L. Chalmers and F. T. Metcalf (see [1]). In this paper we extend Jameson's results by describing a procedure to find a minimal projection from $X=\left[1, t, t_{2}, t|t|^{\sigma}\right] \rightarrow \Pi_{2}$ for all $\sigma \geqslant 1$.

A subspace $Y \subset C[-1,1]$ is said to be symmetric if $f \in Y$ implies $f^{*} \in Y$, where $f^{*}(t)=f(-t)$. An operator $P: Y \rightarrow V(Y, V$ symmetric subspaces) is said to be symmetric if $P f^{*}=(P f)^{*}$ for all $f \in Y$. When searching for a minimal projection it suffices to consider only symmetric projections since any projection P can by symmetrized by defining $\hat{P} f=\frac{1}{2}\left(\left(P f^{*}\right)^{*}+P f\right)$. This gives $\|\hat{P}\| \leqslant\|P\| . P$ is symmetric if and only if P takes even/odd functions to even/odd functions.

The symmetric projections from $X \rightarrow \Pi_{2}$ form a one-parameter family of operators, since each projection is uniquely determined by where $t|t|^{\sigma}$ is sent and, since this function is odd, we must have Pt $|t|^{\sigma}=\alpha t$ for some α. Thus we write P_{α} for a symmetric projection.

For $\sigma \geqslant 1$, we establish an analog of the third degree Chebyshev polynomial. Define $\left.\hat{T}_{\sigma+1}(t)=\left(1 / \sigma \beta_{0}^{\sigma+1}\right) t|t|^{\sigma}-\left((\sigma+1) / \sigma \beta_{0}\right)\right) t$, where β_{0} is the unique solution to $H(\beta)=\sigma \beta^{\sigma+1}+(\sigma+1) \beta^{\sigma}-1=0$ on [0,1$]$. Then $\hat{T}_{\sigma+1}(t)$ is a norm 1 odd function with $\hat{T}_{\sigma+1}\left(\beta_{0}\right)=-1, \hat{T}_{\sigma+1}^{\prime}\left(\beta_{0}\right)=0$ and $\hat{T}_{\sigma+1}(1)=1$ (and corresponding values at $t=-\beta_{0}$ and $t=-1$). Denoting the monic version of a function $f(t)$ by $m(f(t))$, one can easily check that $t|t|^{\sigma}$ is uniquely best approximated from Π_{2} by $t|t|_{\sigma}-m\left(\hat{T}_{\sigma+1}(t)\right)$.

We will need the following result from topological degree theory.

Lemma 1.1. Let $F: D \subset R^{2} \rightarrow R^{2}$ be continuous in the simply connected domain D. Let $G \subset D$ be a domain with boundary $\tau(t)$, a simple closed curve. If the winding number of the image of τ under F with respect to the origin is not zero (i.e. $\omega(F \tau, 0) \neq 0$) then there exists $z \in G$ such that $F(z)=0$.

Proof. We will show the contrapositive in the complex plane. Fix $z_{0} \in \tau$. Then z_{0} is homotopic to τ. By the continuity F, we also have $F z_{0}$ homotopic to $F \tau$ in $\mathscr{C}-\{0\}$. Since $1 / z$ is analytic in $\mathscr{C}-\{0\}$, we have

$$
\omega(F \tau, 0)=\frac{1}{2 \pi i} \int_{F \tau} \frac{1}{z} d z=\frac{1}{2 \pi i} \int_{F z_{0}} \frac{1}{z} d z=0 .
$$

We now give a characterization for minimal projections on finite dimensional spaces (see [2] for proof). Let X be a real finite dimensional normed space and V an n-dimensional subspace. Let $S(X)$ and $B(X)$ denote the unit sphere and unit ball, respectively, Let $\mathscr{B}=\mathscr{B}(X, V)$ be the space of all bounded linear operators from X to V and \mathscr{P} be the subset of all projections.

Definition 1.1. For $P \in \mathscr{P}$ define the set of extremal pairs of P as $\mathscr{E}(P)=\left\{(x, y) \in S(X) \times S\left(X^{*}\right) \mid\langle P x, y\rangle=\|P\|\right\}$.

Notation. For $u \in X^{*}, v \in X$ define $u \otimes v: X \rightarrow X$ by $\langle x, u \otimes v\rangle=$ $\langle x, u\rangle v$. Thus each pair $(x, y) \in \mathscr{E}(P)$ can be associated with the operator $y \otimes x$.

Theorem 1.1. $P \in \mathscr{P}$ has minimal norm if and only if there exists an operator $E_{P} \in \overline{c o}\{\mathscr{E}(P)\}$ such that V is an invariant subspace of E_{P}.

2. Main Results

Theorem 2.1. For $\sigma \geqslant 1$, the minimal projection from X onto V_{3} is given by $P_{\alpha}=\sum_{i=1}^{3}\left(u_{i} \otimes v_{i}\right)$ where $v_{i}(t)=t^{i-1}$ and

$$
\left(\begin{array}{c}
\\
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{-1}{2 \alpha^{1 / \sigma}} & 0 & \frac{1}{2 \alpha^{1 / \sigma}} \\
\frac{1}{2 \alpha} & \frac{-1}{\alpha} & \frac{1}{2 \alpha}
\end{array}\right)\left(\begin{array}{c}
\delta_{-\alpha^{1 / \sigma}} \\
\delta_{0} \\
\delta_{\alpha^{1 / \sigma}}
\end{array}\right)
$$

where $\alpha \in\left[\left(\beta_{0}\right)^{\sigma}, 1\right]$ and δ_{t} denotes point evaluation at t.
The norms of some of these minimal projections are given at the this paper. We prove the following lemmas in order to establish the above.

Lemma 2.1. For $-1 \leqslant t_{1}<0 \leqslant t_{2}<1$, we have $X^{*}=\left[\delta_{1}, \delta_{t_{2}}, \delta_{t_{1}}, \delta_{t_{1}}^{\prime}\right]$.
Lemma 2.2. For $t \in(-1,1)$, we have $X^{*}=\left[\delta_{1}, \delta_{t}, \delta_{t}^{\prime}, \delta_{-1}\right]$.
The proofs of these lemmas are omitted since they simply involve verifying non-zero determinants. In the above, δ_{t}^{\prime} denotes first derivative evaluation at t. From Lemma 2.1 we have the following definition.

Definition 2.1. Let $\eta, \beta \in[0,1]$ with $\eta \leqslant \beta$ and $\eta \neq 1$. Then $f_{\eta, \beta}(t)=$ $A t|t|^{\sigma}+B t^{2}+C t+D \in X$ is the unique function satisfying $f_{\eta, \beta}(1)=1$, $f_{\eta, \beta}(\eta)=-1, f_{\eta, \beta}(-\beta)=1, f_{\eta, \beta}^{\prime}(\beta)=0$.

Note 1. The coefficiednts of $f_{\eta, \beta}(t)=A t|t|_{\sigma}+B t^{2}+C t+D$ are found by solving a linear system. They are given by

$$
\left(\begin{array}{l}
A \tag{1}\\
B \\
C \\
D
\end{array}\right)=\frac{-2}{K}\left(\begin{array}{c}
1 \\
F^{\prime}(\beta) \\
(\beta-1) F^{\prime}(\beta)-F(\beta) \\
F(\beta)-\beta F^{\prime}(\beta)-1-K / 2
\end{array}\right)
$$

where

$$
F(\beta)=\frac{1+\beta^{\sigma+1}}{1+\beta}, \quad F^{\prime}(\beta)=\frac{d F}{d \beta}
$$

and

$$
K=(\eta-1)\left[F^{\prime}(\beta)(\beta+\eta)-F(\beta)\right]+\eta^{\sigma+1}-1 .
$$

Definition 2.2. $\mathscr{F}_{\eta, \beta}=\left\{f_{\eta, \beta}(t) \in X \mid G_{1}(\eta, \beta)=0\right\}$, where $G_{1}(\eta, \beta)=$ $f_{\eta, \beta}^{\prime}(\eta)$.

We show $\mathscr{F}_{\eta, \beta}$ is non-empty in Lemma 2.5.
Lemma 2.3. If $f(t)=A t|t|^{\sigma}+B t^{2}+C t+D \in \mathscr{F}_{\beta}$ (i.e. $G_{1}(\beta, \eta)=0$) and $\beta \geqslant \beta_{0}, \eta \leqslant \beta$ then $\|f\|=1$.

Proof. For $f \in \mathscr{F}_{\beta}$, we have $f(1)=f(-\beta)=1, f(\eta)=-1$ and $f^{\prime}(-\beta)=$ $f^{\prime}(\eta)=0$. Also note for any $f \in X, f^{\prime \prime}(t)=A \sigma(\sigma+1) \operatorname{sgn}(t)|t|^{\sigma-1}$. Thus $f^{\prime \prime}$ has at most one zero, so f^{\prime} has at most 2 zeroes. It follows that if $f \in \mathscr{F}_{\beta}$ then $f(\eta)$ is a relative minimum and $f(-\beta)$ a relative maximum. It is clear that if $\left|f\left(t_{0}\right)\right|>1$ for $t_{0} \in[-\beta, 1]$, another relative extreme point would be necessary and this would imply that f^{\prime} has more than 2 zeroes. So $|f(t)| \leqslant 1$ on $[-\beta, 1]$. We now show $|f(-1)| \leqslant 1$ to conclude $\|f\|=1$. Since $f(-1) \leqslant 1$ is clear, we show $f(-1) \geqslant-1$.

First note from the definition of the coefficients that we have

$$
f(-1)=-A+B-C+D=-2(A+C)+1
$$

We show $f(-1)$ to be a continuous function of $\beta \in\left[\beta_{0}, 1\right]$. Recall

$$
\begin{equation*}
G_{1}(\beta, \eta)=\frac{-2\left[(\sigma+1) \eta^{\sigma}+2 F^{\prime}(\beta) \eta-(1-\beta) F^{\prime}(\beta)-F(\beta)\right]}{K}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{1}(\beta, \eta)=0 \Leftrightarrow G_{\beta}(\eta)=(\sigma+1) \eta^{\sigma}-F(\beta)+F^{\prime}(\beta)(2 \eta+\beta-1)=0 . \tag{3}
\end{equation*}
$$

Fix $\beta \in\left[\beta_{0}, 1\right]$. Then

$$
G_{\beta}(0)=-F(\beta)+F^{\prime}(\beta)(\beta-1)<0
$$

since $F^{\prime}(\beta)=H(\beta) /(1+\beta)^{2}$. Also

$$
G_{\beta}(\beta)=\frac{H(\beta)}{(1+\beta)^{2}}(4 \beta) \geqslant 0
$$

with equality only when $\beta=\beta_{0}$. Thus for each $\beta \in\left[\beta_{0}, 1\right], G_{\beta}(\eta)=0$ for some $\eta \in[0, \beta]$. Furthermore since

$$
\frac{d G_{\beta}}{d \eta}>0
$$

the zero in $[0, \beta]$ is unique and varies continuously with β. Therefore, we write $\eta=\eta(\beta)$ as the continuous function of β which yields the solution to $G_{\beta}(x)=0$ on $[0, \beta]$. Thus $f(-1)$ is a continuous function of $\beta \in\left[\beta_{0}, 1\right]$.

Now note for $\beta=1, f(-1)=1$ by the definition of $f \in \mathscr{F}_{\eta, \beta}$. And $f(-1)=-1$ for $\beta=\beta_{0}\left(\beta=\beta_{0}\right.$ corresponds to $\left.\hat{T}_{\sigma+1}\right)$. Suppose for some $\beta \in\left[\beta_{0}, 1\right]$ we have $f_{\beta}(-1)<-1$. Then there exists $\beta_{*} \in\left(\beta_{0}, 1\right)$ such that $f_{u_{*}}(-1)=-1$. So we can conclude $\left\|f_{u_{*}}\right\|=1$. Furthermore, since $f_{u_{*}} \in \mathscr{F}_{\eta, \beta}$, we have $f_{u_{*}}(-1)=f_{u_{*}}(\eta)=-1$ and $f_{u_{*}}\left(-\beta_{0}\right)=f_{\beta_{0}}(1)=1$. With $m\left(f_{u_{*}}(t)\right)$ as the monic version of $f_{u_{*}}(t)$ we would have $t|t|^{\sigma}-m\left(f_{\beta_{0}}(t)\right)$ as a best approximate to $t|t|^{\sigma}$; but this contradicts the fact that $\hat{T}_{\sigma+1}$ is the best approximate. Thus $f(-1) \geqslant-1$ and $\|f\|=1$.

Lemma 2.2 allows us to define the following.
Definition 2.3. Let $\gamma \in(-1,0)$. Then $f_{\gamma}(t)=a t|t|^{\sigma}+b t^{2}+c t+d \in X$ is the unique function satisfying $f_{\gamma}(1)=-1, f_{\gamma}(\gamma)=1, f_{\gamma}^{\prime}(\gamma)=0, f_{\gamma}(-1)=1$.

Note 2. The coefficients of f_{γ} are given by

$$
d=\frac{\sigma|\gamma|^{\sigma+1}-(\sigma+1)|\gamma|^{\sigma}+1}{(\sigma-1)|\gamma|^{\sigma+2}-(\sigma+1)|\gamma|^{\sigma}+\gamma^{2}+1}
$$

and

$$
c=\frac{\left(\gamma^{2}-1\right) D-|\gamma|^{\sigma+1}+1}{|\gamma|^{\sigma+1}+\gamma}, \quad b=-d, a=-(1+c) .
$$

Definition 2.4. $\mathscr{F}_{\gamma}=\left\{f_{\gamma} \in X \mid \gamma \in(-1,0)\right\}$.
Lemma 2.4. If $f(t) \in \mathscr{F}_{\gamma}$, then $\|f\|=1$.
Proof. For $f(t)=a t|t|^{\sigma}+b t^{2}+c t+d \in \mathscr{F}_{\gamma}$ we have $f(-1)=f(\gamma)=1$, $f(1)=-1$ and $f^{\prime}(\gamma)=0$ (and recall, for any $f \in X, f^{\prime}$ has at most two zeroes). Note f^{\prime} must have a zero in $(-1, \gamma)$. It follows that $f(\gamma)$ is a maximum and thus $|f(t)| \leqslant 1$ for $t \in[\gamma, 1]$. Clearly $f(t) \leqslant 1$ on $[-1, \gamma]$. We now show that $f(t) \geqslant 0$ for $t \leqslant 0$. Since f^{\prime} has all its zeroes in [$-1,1$], we can conclude $f(t) \rightarrow \infty$ as $t \rightarrow-\infty$. Thus the coefficient $a<0$. This says that $f^{\prime \prime}$ is decreasing and we know $f^{\prime \prime}(\gamma)<0$. Since $f(\gamma)=1, f^{\prime}(\gamma)=0$, and $f(1)=-1$ we must have $f(0)=d>0$. Since $d<1$ we have $c<0$. Now for $t<0, f(t)>0$ follows from the signs of the coefficients.

Definition 2.5. Fix $\sigma \geqslant 1, \alpha \in\left[\beta_{0}^{\sigma}, 1\right]$ and $\rho \in[-1,0]$. Then define the functional $L_{\rho}=\delta_{\rho} \circ P_{\alpha} \in X^{*}$.

Note 3. $\left\|P_{\alpha}\right\|=\max _{\rho \in[-1,0]}\left\|L_{\rho}\right\|$. Note that $\left\|L_{0}\right\|=\left\|L_{-\alpha^{1 / \sigma}}\right\|=1$.
Definition 2.6. Let $\phi \in X^{*}$. If there exists $\left\{t_{i}\right\}_{i=1}^{n} \subset[-1,1]$ and constants $\left\{c_{i}\right\}_{i=1}^{n}$ such that $\phi=\sum_{i=1}^{n} c_{i} \delta_{i}$ with $\|\phi\|=\sum_{i=1}^{n}\left|c_{i}\right|$, then we say this representation of ϕ is a canonical representation.

Lemma 2.5. Fix $\alpha \in\left[\left(\beta_{0}\right)^{\sigma}, 1\right]$ and $\rho \in\left[-1,-\alpha^{1 / \sigma}\right]$. Then there exists constants $\left\{c_{i}\right\}_{i=1}^{3}$ and $\beta, \eta \in[0,1]$ with $\beta \geqslant \alpha^{1 / \sigma}$ and $\eta \leqslant \beta_{0}$ such that the representation $L_{\rho}=c_{1} \delta_{1}+c_{2} \delta_{\eta}+c_{3} \delta_{-\beta}$ is a canonical representation. Furthermore, $f_{\eta, \beta} \in \mathscr{F}_{\eta, \beta}$ is an extremal for L_{ρ}.

Proof. A representation of L_{ρ} must agree with L_{ρ} on the basis for X. Forcing the above representation and L_{ρ} to agree on $\left\{1, t, t^{2}\right\}$ gives

$$
\left(\begin{array}{l}
c_{1} \tag{4}\\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{(\rho+\beta)(\rho-\eta)}{(\beta+1)(1-\eta)} \\
\frac{(\rho+\beta)(1-\rho)}{(\beta+\eta)(1-\eta)} \\
\frac{(\rho-\eta)(\rho-1)}{(\beta+1)(\beta+\eta)}
\end{array}\right)
$$

To ensure agreement on $t|t|^{\sigma}$, we define

$$
G_{2}(\beta, \eta)=c_{1}+c_{2} \eta^{\sigma+1}-c_{3} \beta^{\sigma+1}-\alpha \rho
$$

for c_{1}, c_{2}, c_{3} above. Thus L_{ρ} has the above representation if and only if $G_{2}(\beta, \eta)=0$ for some $\beta, \eta \in[0,1]$. Note for $\rho=-\alpha^{1 / \sigma}, L_{\rho}$ is a point evaluation and the representation is immediate. This simple representation also occurs in the case $\alpha=1$, since we must choose $\rho=-1$. Then $L_{-1}=\delta_{-1}$ and again the representation is trivial. Thus, in the following we assume $\alpha<1$ and $\rho<-\alpha^{1 / \sigma}$. Define $G=\left(G_{1}, G_{2}\right): R^{2} \rightarrow R^{2}$ for G_{1} and G_{2} defined above. Recall the forms of G_{1} and G_{2} :

$$
\begin{gathered}
G_{1}(x, y)=\frac{-2\left[(\sigma+1) y^{\sigma}+2 F^{\prime}(x) y-(1-x) F^{\prime}(x)-F(x)\right]}{(y-1)\left(F^{\prime}(x)(x+y)-F(x)\right)+y^{\sigma+1}-1} \\
G_{2}(x, y)=\frac{(\rho+x)(\rho-y)}{(x+1)(1-y)}+y^{\sigma+1} \frac{(\rho+x)(1-\rho)}{(x+y)(1-y)}-x^{\sigma+1} \frac{(\rho-y)(\rho-1)}{(x+1)(x+y)}-\alpha \rho .
\end{gathered}
$$

We now find a zero of G in the following region. Define $\Omega_{\alpha} \subset R^{2}$ as the region bounded by the following four line segments:

$$
\begin{aligned}
l_{1} & =\left\{(x, 0) \mid \alpha^{1 / \sigma} \leqslant x \leqslant-\rho\right\} \\
l_{2} & =\{(-\rho, y) \mid 0 \leqslant y \leqslant-\rho\} \\
l_{3} & =\left\{(x, x) \mid \alpha^{\sigma / 1} \leqslant x \leqslant-\rho\right\} \\
l_{4} & =\left\{\left(\beta_{0}, y\right) \mid 0 \leqslant y \leqslant \alpha^{1 / \sigma}\right\} .
\end{aligned}
$$

Now for $\rho>-1$, the denominators of G_{1} and G_{2} are never zero in Ω_{α} and thus G is continuous on Ω_{α}. We will now prove the lemma first for $\rho>-1$
and consider $\rho=-1$ separately. We will show the image of $\partial \Omega_{\alpha}$ under G winds around the origin abnd conclude, from Lemma 1.1, that a zero of G exists in Ω_{α}. We first consider $G\left(l_{1}\right)$. It is easy to check that

$$
G_{1}(x, 0)=2\left[\frac{(1-x) F^{\prime}(x)+F(x)}{-x F^{\prime}(x)+F(x)-1}\right]<0
$$

for $\alpha^{1 / \sigma} \leqslant x \leqslant-\rho$. Thus we conclude $G\left(l_{1}\right)$ is a curve staying to the left of the origin (in the (G_{1}, G_{2}) plane). Now consider $G\left(l_{2}\right)$. From above we see $G_{1}(-\rho, 0)<0$. We claim that $G_{1}(-\rho,-\rho)>0$. This will be shown when looking at the image of l_{3}. Furthermore, observe

$$
G_{2}(-\rho, y)=|\rho|\left(\alpha-|\rho|^{\sigma}\right)<0
$$

since $|\rho|^{\sigma}>\alpha$. Thus $G\left(l_{2}\right)$ is a curve lying below the origin. Consider $G\left(l_{3}\right)$. After much simplification one finds

$$
G_{1}(x, x)=\frac{-4 H(x)}{x\left(\sigma x^{\sigma+1}+2 x^{\sigma}-\sigma x^{\sigma-1}-2\right)}
$$

and

$$
\sigma x^{\sigma+1}+2 x^{\sigma}-\sigma x^{\sigma-1}-2=2\left(x^{\sigma}-1\right)+\sigma x^{\sigma-1}\left(x^{2}-1\right)<0 .
$$

Since $H(x)>0$ for $x \in\left[\alpha^{1 / \sigma}-\rho\right]$ we conclude $G_{1}(x, x)>0$. Now consider $G_{2}(x, x)$. From above, we see that $G_{2}(-\rho,-\rho)<0$. Furthermore, one easily finds $G_{2}\left(\alpha^{1 / \sigma}, \alpha^{1 / \sigma}\right)>0 . G\left(l_{3}\right)$ lies to the right of the origin. Finally, we consider $G\left(l_{4}\right)$. With $G_{1}\left(\alpha^{1 / \sigma}, \alpha^{1 / \sigma}\right)>0$ and $G_{1}\left(\alpha^{1 / \sigma}, 0\right)<0$ we show $G\left(l_{4}\right)$ lies above the origin by showing $G_{2}\left(\alpha^{1 / \sigma}, y\right)>0$ for $y \in\left[0 \alpha^{1 / \sigma}\right]$:

$$
\begin{aligned}
G_{2}\left(\alpha^{1 / \sigma}, y\right) & =\frac{\left(\rho+\alpha^{1 / \sigma}\right)(\rho-y)}{\left(\alpha^{1 / \sigma}+1\right)(1-y)}-y^{\sigma+1} \frac{\left(\rho+\alpha^{1 / \sigma}\right)(\rho-1)}{\left.\left(\alpha^{1 / \sigma}+y\right)() 1-y\right)} \\
& -\alpha^{(\sigma+1) / \sigma} \frac{(\rho-1)(\rho-y)}{\left(\alpha^{1 / \sigma}+1\right)\left(\alpha^{1 / \sigma}+y\right)}-\alpha \rho .
\end{aligned}
$$

A common denominator of $(1-y)\left(\alpha^{1 / \sigma}+1\right)\left(\alpha^{1 / \sigma}+y\right)>0$ can be used to combine the above. Using the inequality $\rho<-\alpha^{1 / \sigma}$, one finds the numerator to be positive and $G_{2}\left(\alpha^{1 / \sigma}, y\right)>0$ for $y \in\left[0, \alpha^{1 / \sigma}\right]$. This demonstrates that the image of $\partial \Omega_{\alpha}$ under G has a nonzero winding number with respect to the origin. By Lemma 1.1 we have a zero of G in Ω_{α} for the case $\rho \in\left(-1,-\alpha^{1 / \sigma}\right)$. For $\rho=-1$, define

$$
\hat{G}=\left(\hat{G}_{1}, \hat{G}_{2}\right)=\left(\frac{G_{1}}{1+\left|G_{1}\right|}, \frac{G_{2}}{1+\left|G_{2}\right|}\right) .
$$

Note \hat{G} is continuous on Ω_{α} and the zeroes of \hat{G} and G coincide. Furthermore, since $\operatorname{sgn}\left(\hat{G}_{i}\right)=\operatorname{sgn}\left(G_{i}\right)$, it is clear from the examination of $G(\partial \Omega)$ that the winding number of $\hat{G}\left(\partial \Omega_{\alpha}\right)$ with respect to the origin is also nonzero. Now for $\alpha \in\left[\left(\beta_{0}\right)^{\sigma}, 1\right]$ and $\rho \in\left[-1,-\alpha^{1 / \sigma}\right]$ we have $L_{\rho}=c_{1} \delta_{1}+$ $c_{2} \delta_{\eta}+c_{3} \delta_{-\beta}$ for $\beta, \eta \in \Omega_{\alpha}$ and c_{i} as in (4). To see this representation is canonical, observe from (4) that $c_{1} \geqslant 0, c_{2} \leqslant 0$ and $c_{3} \geqslant 0$ (this follows immediately from $\beta, \eta \in \Omega_{\alpha}$). Furthermore, since $G_{1}(\beta \eta)=0$ we have that $f_{\beta \eta} \in \mathscr{F}_{\eta \beta}$. Therefore

$$
L_{\rho} f_{\beta \eta}=c_{1}-c_{2}+c_{3}=\left|c_{1}\right|+\left|c_{2}\right|+\left|c_{3}\right|=\left\|L_{\rho}\right\| .
$$

Thus, the representation is canonical and $f_{\beta, \eta}$ is an extremal for L_{ρ}
Lemma 2.6. The canonical representation for L_{ρ} given in Lemma 2.5 is unique (or, equivalently, G has a unique zero in Ω_{α}).

Proof. Uniqueness of canonical representations of functionals on polynomial spaces is given in [4]. The result easily generalizes to our $X=\left[1, t, t^{2}, t|t|^{\sigma}\right]$ with $\sigma>1$. For $\sigma=1$ we can solve for η in terms of β when $G_{1}(\beta, \eta)=0$; one finds $\eta=1 /(2+\beta)$. Also consider $G_{2}(\beta \eta)$ for $\sigma=1$ and $\rho=-1$ (we consider $\rho=-1$ since this will eventually be the only ρ of interest)

$$
G_{2}(\beta \eta)=\frac{(\alpha-3) \beta^{3}+3(\alpha-3) \beta^{2}+3(\alpha+1) \beta+\alpha+1}{(1+\beta)^{3}}
$$

It is easily seen (by checking the derivative of the numerator) that this function has a unique zero on $[0,1]$. It is also obvious that this zero changes continuously with α.

Lemma 2.7. For $\alpha \in\left[\left(\beta_{0}\right)^{\sigma} 1\right]$ and $\rho \in\left[-1-\alpha^{1 / \sigma}\right]$ we have $\left\|L_{-1}\right\| \geqslant$ $\left\|L_{\rho}\right\|$.

Proof. Fix ρ and let $f_{\rho}=f_{\beta \eta} \in \mathscr{F}_{\beta}$ denote the extremal of L_{ρ}. Then $L_{\rho} \|=P_{\alpha} f_{\rho}(\rho)$. Writing $f_{\rho}(t)=A t|t|^{\sigma}+B t^{2}+C t+D$ where the coefficients are as in (1) we have $P_{\alpha} f_{\rho}(t)=B t^{2}+(\alpha A+C) t+D$ and we claim

$$
\begin{equation*}
\left(P_{\alpha} f_{\rho}\right)^{\prime}(t)=2 B t+\alpha A+C \leqslant 0 t \in[-1,0] . \tag{5}
\end{equation*}
$$

Recalling the formulas for A, B, and C in (1), note that

$$
K=(\eta-1)\left[F^{\prime}(\beta)(\beta+\eta)-F(\beta)\right]+\eta^{\sigma+1}-1<0
$$

since

$$
F^{\prime}(\beta)(\beta+\eta)-F(\beta)=\frac{H(\beta)}{(1+\beta)^{2}}-\frac{1+\beta^{\sigma+1}}{1+\beta} \geqslant-1
$$

It follows that $A, B>0$ and $C>0$. Now note $\alpha A+C \geqslant 2 B t+\alpha A+C$ $t \in[-1,0]$. But

$$
\alpha A+C=\frac{-2}{K}\left((\beta-1) F^{\prime}(\beta)+\alpha-F(\beta)\right)
$$

and $-2 / K>0$. Also, recalling that $F^{\prime}(\beta)>0$ and $\beta>\alpha^{1 / \sigma}$ from Lemma 2.5, we have

$$
F(\beta)=\frac{1+\beta^{\sigma+1}}{1+\beta} \geqslant \frac{1+\alpha^{(\sigma+1) / \sigma}}{1+\alpha^{1 / \sigma}} \geqslant \alpha .
$$

Thus

$$
0 \geqslant \alpha-F(\beta) \geqslant(\beta-1) F^{\prime}(\beta)+\alpha-F(\beta)
$$

and (5) follows. Since $P_{\alpha} f_{\rho}(t)$ is decreasing on $[-1,0]$ we have

$$
\left\|L_{-1}\right\|=P_{\alpha} f_{-1}(-1) \geqslant P_{\alpha} f_{\rho}(-1) \geqslant P_{\alpha} f_{\rho}(\rho)=\left\|L_{\rho}\right\| .
$$

Lemma 2.8. $\left\|L_{-1}\right\|$ is a continuous function of α, where $\alpha \in\left[\left(\beta_{0}\right)^{\sigma}, 1\right]$.
Proof. From the definition of the coefficients in (4), we have

$$
\left\|L_{-1}\right\|=\frac{\eta^{2}+\beta \eta-\eta+3 \beta-4}{(\eta-1)(\eta+\beta)}
$$

where β and η are such that $G(\beta, \eta)=0$ in Ω_{α}. By the simple dependence of G on α (G_{1} is independent of α and α occurs in G_{2} as a constant) and by the uniqueness of the zero of G in Ω_{α}, it follows that this zero varies continuously with α (an assumption of a discontinuity leads to an immediate contradiction). Thus β and η vary continuously with α.

Lemma 2.9. Fix $\alpha \in\left[\left(\beta_{0}\right)^{\sigma} 1\right]$ and $\rho \in\left[-\alpha^{1 / \sigma} 0\right]$. Then there exists constants c_{i} and $\gamma_{0} \in(-1,0]$ such that the representation $L_{\rho}=c_{1} \delta_{1}+c_{2} \delta_{\gamma_{0}}+$ $c_{3} \delta_{-1}$ is a canonical representation. Furthermore $f_{\gamma_{0}} \in \mathscr{F}_{\gamma}$ is an extremal for L_{ρ}.

Proof. Obtaining agreement on $\left\{1, t, t^{2}\right\}$ between L_{ρ} and the above representation gives

$$
\left(\begin{array}{l}
c_{1} \tag{6}\\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{(\rho+1)(\rho-\gamma)}{2(1-\gamma)} \\
\frac{\left(\rho^{2}-1\right)}{\left(\gamma^{2}-1\right)} \\
\frac{(\rho-1)(\rho-\gamma)}{2(1+\gamma)}
\end{array}\right) .
$$

To force agreement on all of X, we must have

$$
\left.\left.\langle t| t\right|^{\sigma}, L_{\rho}\right\rangle=\alpha \rho=c_{1}+c_{2} \gamma|\gamma|^{\sigma}-c_{3}
$$

or equivalently

$$
\begin{align*}
& c_{1}+c_{2} \gamma|\gamma|^{\sigma}-c_{3}-\alpha \rho= \\
& \quad \frac{\left(\rho^{2}-1\right) \gamma|\gamma|^{\sigma}+\rho(1-\alpha) \gamma^{2}+\left(1-\rho^{2}\right) \gamma-\rho+\alpha \rho}{\gamma^{2}-1}=0 . \tag{7}
\end{align*}
$$

The numerator in (7) has two zeroes in $[-1,0]: \gamma=-1$ and $\gamma=\gamma_{0}$ where $\gamma_{0} \in[\rho, 0]$. In the case $\alpha=1, \gamma_{0}=0$ for all ρ. In thze case $\rho=-\alpha^{1 / \sigma}$, note $\gamma_{0}=\rho$. Since $0 \geqslant \gamma_{0} \geqslant \rho$, the coefficients in (6) are such that $c_{1} \leqslant 0$ and $c_{2}, c_{3} \geqslant 0$. Recalling the properties of $f_{\gamma 0} \in \mathscr{F}_{\gamma}$ we have

$$
L_{\rho} f_{\gamma_{0}}=-c_{1}+c_{2}+c_{3}=\left|c_{1}\right|+\left|c_{2}\right|+\left|c_{3}\right|=\left\|L_{\rho}\right\|
$$

and thus the representation is canonical.
Note 4. Fix $\alpha \in\left[\left(\beta_{0}\right)^{\sigma}, 1\right]$. Using the above notation, we can write

$$
\left\|L_{\rho}\right\|=\frac{\rho^{2}-\rho\left(\gamma_{0}-1\right)-1}{\gamma^{0}-1} \rho \in\left[-\alpha^{1 / \sigma}, 0\right] .
$$

Recall that $\left\|L_{\rho}\right\|=\left\|L_{-\alpha^{1 / \sigma}}\right\|=1$. Since $\left\|L_{\rho}\right\|$ is a continuous function of ρ (the selection of γ_{0} is continuous in ρ), we choose $\rho^{*} \in\left[-\alpha^{1 / \sigma}, 0\right]$ such that

$$
\left\|L^{\rho^{*}}\right\|=\max _{\rho \in\left[-\alpha^{/ / \sigma}, 0\right]}\left\|L_{\rho}\right\|
$$

and let $N(\alpha)=\left\|L_{\rho^{*}}\right\|$
Lemma 2.10. $\quad N(\alpha)$ is a continuous function of α.
Proof. We claim $\lim _{\alpha \rightarrow \alpha_{0}} N(\alpha)=N\left(\alpha_{0}\right)$. We will show that $\lim _{\alpha \rightarrow \alpha_{0}^{-}} N(\alpha)$ $=N\left(\alpha_{0}\right)$; the similar statement using right-hand limits will then follows by an identical argument. Thus fix $\alpha_{0} \in\left[\left(\beta_{0}\right)^{\sigma}, 1\right]$ and let $\alpha_{n} \rightarrow \alpha_{0}^{-}$. Without loss, we may assume $\left\{\alpha_{n}\right\}$ is an increasing sequence, i.e., we assume $\alpha_{n} \leqslant \alpha_{n+1}$. Now, for $\alpha \in\left[\left(\beta_{0}\right)^{\sigma}, 1\right]$, we define the following function on $[-1,0]$:

$$
N_{\alpha}(\rho)=\left\{\begin{array}{ll}
\left\|L_{\rho}\right\| & -\alpha^{1 / \sigma} \leqslant \rho \leqslant 0 \\
1 & -1 \leqslant \rho<-\alpha^{1 / \sigma}
\end{array} ;\right.
$$

thus $N(\alpha)=\max _{\rho \in[-1,0]} N_{\alpha}(\rho)$. Clearly, if the sequence of functions $N_{\alpha_{n}}(\rho)$ converges uniformly on $[-1,0]$ to $N_{\alpha_{0}}(\rho)$ then

$$
\lim _{n \rightarrow \infty} \max _{\rho \in[-1,0]} N_{\alpha_{n}}(\rho)=\max _{\rho \in[-1,0]} N_{\alpha_{0}}(\rho)
$$

and we will have

$$
\lim _{a_{n} \rightarrow a_{0}^{-}} N\left(\alpha_{n}\right)=N\left(\alpha_{0}\right) .
$$

Thus we now establish the uniform convergence of $N_{\alpha_{n}}(\rho)$ to $N_{\alpha_{0}}(\rho)$ by appealling to Dini's Theorem. Indeed, for fixed $n, N_{\alpha_{n}}(\rho)$ is continuous in ρ, as is $N_{\alpha_{0}}(\rho)$. Furthermore we claim that $N_{\alpha_{n}}(\rho)$ converges pointwise on $[-1,0]$ to $N_{\alpha_{0}}(\rho)$. Pointwise convergence is clear for a fixed $\rho \leqslant-\alpha_{0}^{1 / \sigma}$. For fixed $\rho>-\alpha_{0}^{1 / \sigma}$, we note equation (7). Specifically note that for fixed $\rho>-\alpha_{0}^{1 / \sigma}, \gamma_{0}$ (the zero of the numerator in (7) located in the fixed interval $[-\rho, 0])$ varies continuously with α. Thus pointwise convergence follows. Finally, we now show that

$$
\begin{equation*}
N_{\alpha_{n}}(\rho) \geqslant N_{\alpha_{n+1}}(\rho) \quad \forall \rho \in[-1,0] . \tag{9}
\end{equation*}
$$

Since (9) is clear for $\rho \leqslant \alpha_{0}^{1 / \sigma}$, we fix $\rho \in\left[-\alpha_{0}^{1 / \sigma}, 0\right]$ and recall $\alpha_{n} \leqslant \alpha_{n+1}$. Recall also that γ_{0} is the unique solution to

$$
\left(\rho^{2}-1\right) \gamma|\gamma|^{\sigma}+\rho(1-\alpha) \gamma^{2}+\left(1-\rho^{2}\right) \gamma-\rho+\alpha \rho=0
$$

on $[\rho, 0]$. Let $\gamma_{0_{\alpha}}$ denote the solution to the above for a given α. Then, rewriting the above as

$$
1-\alpha=\kappa \lambda\left|\gamma_{\alpha}\right|\left(\frac{1-\left|\gamma_{\alpha}\right|^{\sigma}}{1-\gamma_{\alpha}^{2}}\right)
$$

with κ a positive constant (depending only on ρ), we claim that if

$$
f(x)=x\left(\frac{\left.1-x^{\sigma}\right)}{1-x^{2}}\right)
$$

defined on $[0,1]$, where we define $f(1)=\sigma / 2$, it is easy to check that f is monotone increasing on $[0,1]$. And thus if $f\left(x_{1}\right) \leqslant f\left(x_{2}\right)$ then we must have $x_{1} \leqslant x_{2}$. Therefore, if $\alpha_{n} \leqslant \alpha_{n+1}$ then $\left(1-\alpha_{n}\right) \geqslant\left(1-\alpha_{n+1}\right)$ and thus $\left|\gamma_{0_{x_{n}}}\right| \geqslant\left|\gamma_{0_{x_{n+1}}}\right|$. Now since

$$
N_{\alpha_{n}}(\rho)=\frac{\rho^{2}-\rho\left(\gamma_{0_{x_{n}}}-1\right)-1}{\gamma_{0_{x_{n}}}-1}=\frac{1-\rho^{2}}{1-\gamma_{0_{x_{n}}}}-\rho
$$

and $\left|\gamma_{0_{x_{n}}}\right| \geqslant\left|\gamma_{0_{x_{n+1}}}\right|$, it follows that

$$
N_{\alpha_{n}}(\rho) \geqslant N_{\alpha_{n+1}}(\rho) .
$$

Therefore $N_{\alpha_{n}}$ converges uniformily to $N_{\alpha_{0}}$ and we conclude

$$
\lim _{a_{n} \rightarrow a_{0}^{-}} N\left(\alpha_{n}\right)=N\left(\alpha_{0}\right) .
$$

A similar argument shows

$$
\lim _{a_{n} \rightarrow a_{0}^{+}} N\left(\alpha_{n}\right)=N\left(\alpha_{0}\right)
$$

and thus $N(\alpha)$ is a continuous function of α.
Corollary 2.1. For $\alpha \in\left[\left(\beta_{0}\right)^{\sigma}, 1\right]$ we have

$$
\left\|P_{\alpha}\right\|=\max \left(\left\|L_{-1}\right\|,\left\|L_{\rho^{*}}\right\|\right) .
$$

Furthermore, $\left\|P_{\alpha}\right\|$ is a continuous function of α.
Proof. This follows from Lemma 2.10 and Lemma 2.8.
Lemma 2.11. There exists $\hat{\alpha} \in\left[\left(\beta_{0}\right)^{\sigma}, 1\right]$ such that $\left\|L_{-1}\right\|=\left\|L_{\rho^{*}}\right\|=$ $\left\|P_{\alpha}\right\|$.

Proof. Recall that ρ^{*} depends only on α. For $\alpha=1$, recall $L_{-1}=$ $\delta_{-1} \circ P_{1}=\delta_{-1}$ and thus $\left\|L_{-1}\right\|=1$. We claim $\left\|L_{\rho^{*}}\right\|>1$. Indeed, using Note 4 above we have

$$
\left\|L_{\rho}\right\|=\frac{\rho^{2}-\gamma_{0} \rho+\rho-1}{\gamma_{0}-1}, \quad \rho \in[-1,0] .
$$

Furthermore, in the proof of Lemma 2.9, we see that for $\alpha=1, \gamma_{0}=0$ for all ρ. Therefore,

$$
\left\|L_{\rho^{*}}\right\|=\max _{\rho \in[-1,0]}-\rho^{2}-\rho+1>1
$$

and the claim is established. For $\alpha=\left(\beta_{0}\right)^{\sigma}$, we show $\left\|L_{-1}\right\|>\left\|L_{\rho^{*}}\right\|$ and by Corollary 2.1 we will be done. Recall

$$
\hat{T}_{\sigma+1}(t)=\left(\frac{1}{\sigma\left(\beta_{0}\right)^{\sigma+1}}\right) t|t|^{\sigma}-\left(\frac{\sigma+1}{\sigma \beta_{0}}\right) t
$$

is the analog of the third degree Chebyshev polynomial T_{3}, where β_{0} satisfies $H(\beta)=0$. Consider

$$
L_{-1}\left(\hat{T}_{\sigma+1}\right)=-\left(\frac{1}{\sigma \beta_{0}}-\frac{\sigma+1}{\sigma \beta_{0}}\right)=\frac{1}{\beta_{0}}>1 .
$$

Therefore $\left\|L_{-1}\right\| \geqslant 1 / \beta_{0}$ and we now show

$$
\begin{equation*}
\left\|L_{\rho}\right\|=\frac{\rho^{2}-\gamma_{0} \rho+\rho-1}{\gamma_{0}-1}<\frac{1}{\beta_{0}} \tag{10}
\end{equation*}
$$

for $\rho \in\left[-\beta_{0}, 0\right]$ (recall $-\alpha^{1 / \sigma}=-\beta_{0}$) and γ_{0} as in Lemma 2.9. Recall for $\rho=0$ or $-\alpha^{1 / \sigma}$, we find that $\left\|L_{\rho}\right\|=1$ (since it is a point evaluation). For all other ρ, we have $\gamma_{0}>\rho$ and this case is now considered. Since

$$
\gamma_{0}>\rho \Rightarrow\left(\rho^{2}-1\right)-\rho\left(\gamma_{0}-1\right)>\left(\rho^{2}-1\right)-\rho(\rho-1),
$$

we have

$$
\frac{\rho^{2}-\gamma_{0} \rho+\rho-1}{\gamma_{0}-1}=\frac{\left(\rho^{2}-1\right)-\rho\left(\gamma_{0}-1\right)}{\gamma_{0}-1}<\frac{\left(\rho^{2}-1\right)-\rho(\rho-1)}{\gamma_{0}-1}=\frac{1-\rho}{1-\gamma_{0}} .
$$

So to show (10), we prove $(1-\rho) /\left(1-\gamma_{0}\right) \leqslant 1 / \beta_{0}$, or equivalently:

$$
\begin{equation*}
\frac{1-\gamma_{0}}{1-\rho} \geqslant \beta_{0} . \tag{11}
\end{equation*}
$$

For fixed ρ, we use the numerator of (7) to define

$$
M(\gamma)=\left(\rho^{2}-1\right) \gamma|\gamma|^{\sigma}+\rho(1-\alpha) \gamma^{2}+\left(1-\rho^{2}\right) \gamma-\rho+\alpha \rho .
$$

One can verify that $M\left(\rho|\rho|^{1 / \sigma}\right)>0$. Recalling that $M(\gamma)$ has a unique zero on $[\rho, 0$] (with $M(\rho)<0$ and $M(0)>0$), we can conclude

$$
\begin{equation*}
\rho|\rho|^{1 / \sigma}>\gamma_{0} . \tag{12}
\end{equation*}
$$

Thus

$$
\frac{1-\gamma_{0}}{1-\rho}>\frac{1-\rho|\rho|^{1 / \sigma}}{1-\rho}
$$

and so we show

$$
\frac{1-\rho|\rho|^{1 / \sigma}}{1-\rho} \geqslant \beta_{0}, \quad \rho \in\left(-\beta_{0}, 0\right) .
$$

This inequality is clearly true at the endpoints of the interval. So set $f(\rho)=$ $\left(1-\rho|\rho|^{1 / \sigma}\right) /(1-\rho)$ and consider

$$
\begin{equation*}
f^{\prime}(\rho)=0 \Leftrightarrow-|\rho|^{1 / \sigma}\left[1+\frac{1}{\sigma}-\frac{\rho}{\sigma}\right]+1=0 \Leftrightarrow|\rho|^{1 / \sigma}=\frac{\sigma}{\sigma+1-\rho} . \tag{14}
\end{equation*}
$$

We want to show that there exists a unique point in $(-1,0), \rho_{0}$, such that the last equality in (14) holds. Since $f^{\prime}(0)>0, f^{\prime}(-1)<0$, and

$$
f^{\prime \prime}(\rho)=\frac{|\rho|^{1 / \sigma}}{\sigma}\left[1+\frac{1}{|\rho|}\left(1+\frac{1-\rho}{\sigma}\right)\right]>0
$$

we can conclude that f has a unique minimum on $[-1,0]$. Thus, we let ρ_{0} be the unique minimum, or equivalently, the unique point satisfying $|\rho|^{1 / \sigma}=\sigma /(\sigma+1-\rho)$. So, to accomplish (13) it remains only to show $f\left(\rho_{0}\right)>\beta_{0}$. Using the last equality in (14) we have

$$
f\left(\rho_{0}\right)=\frac{1-\rho_{0}\left|\rho_{0}\right|^{1 / \sigma}}{1-\rho_{0}}=\frac{1-\rho_{0}\left(\sigma /\left(\sigma+1-\rho_{0}\right)\right)}{1-\rho_{0}}=\frac{\sigma+1}{\sigma+1-\rho_{0}} .
$$

Since $\rho_{0} \in(-1,0)$ we have $(\sigma+1) /\left(\sigma+1-\rho_{0}\right) \geqslant(\sigma+1) /(\sigma+2)$. We claim $(\sigma+1) /(\sigma+2) \geqslant \beta_{0}$. This is equivalent to showing $H((\sigma+1) /(\sigma+2))>0$.

$$
\begin{aligned}
H\left(\frac{\sigma+1}{\sigma+2}\right)>0 & \Leftrightarrow \sigma\left(\frac{\sigma+1}{\sigma+2}\right)^{\sigma+1}+(\sigma+1)\left(\frac{\sigma+1}{\sigma+2}\right)^{\sigma}-1>0 \\
& \Leftrightarrow 2(\sigma+1)^{\sigma+2}-(\sigma+2)^{\sigma+1}>0 \Leftrightarrow 2 x^{x+1}>(x+1)^{x}
\end{aligned}
$$

for $x \geqslant 2$ where $x=\sigma+1$. A simple calculus argument using logarithms shows this to be true. Thus (13) implies (11) and this allows us to conclude (10). The continuity of $\left\|L_{-1}\right\|$ and $\left\|L_{\rho} \star\right\|$ with respect to α completes the proof of Lemma 2.11.

Proof of Theorem 2.1. Let $\hat{\alpha}$ be as in Lemma 2.11. We now construct the $E_{P_{\alpha}}$ operator that will leave V invariant. We define

$$
E_{P_{\alpha}}=\sum_{i=1}^{4}\left(x_{i} \otimes y_{i}\right) \lambda_{i},
$$

where $\left\{\left(x_{i}, y_{i}\right)\right\}$ are the following extremal pairs and λ_{i} 's are defined below. Let $x_{1} \in \mathscr{F}_{\beta}$ such that $\left\|L_{-1}\right\|=L_{-1} x_{1}$ and $y_{1}=\delta_{-1} .\left(x_{1}, y_{1}\right)$ is clearly an extremal pair for P_{α}. By the symmetry of P_{α}, we next define $x_{2}=x_{1}^{*}$ (recall $\left.x^{*}(t)=x(-t)\right)$ and $y_{2}=\delta_{1}$ as the second pair. Finally, let $x_{3} \in \mathscr{F}_{\gamma}$ be such that $\left\|L_{\rho^{\star}}\right\|=L_{\rho^{\star}} x_{3}$ and $y_{3}=\delta_{\rho^{\star}}$; the fourth extremal pair will be $x_{4}=x_{3}^{*}$ and $y_{4}=\delta_{-\rho \star}$. Now setting $\lambda_{1}=\lambda_{2}=\lambda$ and $\lambda_{3}=\lambda_{4}=(1-\lambda)$, we write

$$
E_{P_{\alpha}}=\lambda\left[\left(x_{1} \otimes y_{1}\right)+\left(x_{2} \otimes y_{2}\right)\right]+(1-\lambda)\left[\left(x_{3} \otimes y_{3}\right)+\left(x_{4} \otimes y_{4}\right)\right]
$$

for some $\lambda \in(0,1)$.
Note that

$$
E_{P_{\alpha}}(1)=\lambda\left[x_{1}+x_{2}\right]+(1-\lambda)\left[x_{3}+x_{4}\right] \in \Pi_{2}
$$

since the odd terms vanish. Similarly

$$
E_{P_{\alpha}}\left(t^{2}\right)=\lambda\left[x_{1}+x_{2}\right]+(1-\lambda)\left(\rho^{*}\right)^{2}\left[x_{3}+x_{4}\right] \in \Pi_{2} .
$$

Writing

$$
x_{1}(t)=A t|t|^{\sigma}+B t^{2}+C t+D \quad \text { and } \quad x_{3}=a t|t|^{\sigma}+b t+c t+d
$$

we have

$$
\begin{aligned}
E_{P_{\alpha}}(t) & =\lambda\left[-x_{1}+x_{2}\right]+(1-\lambda) \rho^{*}\left[x_{3}-x_{4}\right] \\
& =2\left[\lambda\left(\text { At }|t|^{\sigma}+C t\right)+(1-\lambda) \rho^{*}\left(a t|t|^{\sigma}+c t\right)\right] .
\end{aligned}
$$

We want to choose λ such that

$$
\lambda\left(-A-\rho^{*} a\right)+\rho^{*} a=0 .
$$

So setting

$$
\lambda=\frac{\rho^{*} a}{A+\rho^{*} a}
$$

and checking back to the definitions of the coefficients of \mathscr{F}_{β} and \mathscr{F}_{γ} elements, we find $a<0$ and $A>0$. Therefore

$$
0<\lambda<1
$$

and P_{α} is minimal.
The following table lists some norms of minimal projections from different overspaces.

σ	$\hat{\alpha}$	$\left\\|P_{\alpha}\right\\|$
1	0.92918	1.21584
2	0.88571	1.19918
3	0.85287	1.18680
5	0.80002	1.16810
8	0.73733	1.14792
10	0.70328	1.13776
11	0.68802	1.13337

References

1. B. L. Chalmers and F. T. Metcalf, Determination of a minimal projection from $C[-1,1]$ on the quadratics, Numer. Funct. Anal. Optim. 11 (1990), 1-10.
2. B. L. Chalmers and F. T. Metcalf, A characterization and equations for minimal projections and extensions, J. Oper. Theory 32 (1994), 31-46.
3. G. J. O. Jameson, A lower bound for the projection constant of P_{2}, J. Approx. Theory 51 (1987), 163-167.
4. T. J. Rivlin, "Chebyshev Polynomials," pp. 97-99, New York, 1990.
